Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- lib/bigdecimal/util.rb,
bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Copyright © 2002 by Shigeo Kobayashi <[email protected]>. You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.
Documented by mathew <[email protected]>.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic. For example:
42**13 -> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2. For example, try:
sum = 0
for i in (1..10000)
sum = sum + 0.0001
end
print sum
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal.new("0")
for i in (1..10000)
sum = sum + BigDecimal.new("0.0001")
end
print sum
Similarly:
(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) -> true
(1.2 - 1.0) == 0.2 -> false
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) -> infinity
BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) -> -infinity
You can represent infinite numbers to BigDecimal using the strings ‘Infinity’, ‘+Infinity’ and ‘-Infinity’ (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) -> NaN
You can also create undefined values. NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal.new(‘NaN’)
n == 0.0 -> nil
n == n -> nil
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned. If the value is positive, a value of positive zero is returned.
BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) -> -0.0
BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) -> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
Constant Summary collapse
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((S_INT)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff
- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02
- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01
- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04
- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an underflow (a result too large to be represented). See BigDecimal.mode.
0x01
- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x01
- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100
- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1
- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2
- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3
- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4
- ROUND_CEILING =
Round towards +infinity. See BigDecimal.mode.
5
- ROUND_FLOOR =
Round towards -infinity. See BigDecimal.mode.
6
- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7
- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0
- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1
- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1
- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2
- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2
- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3
- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Object
BigDecimal.double_fig.
- .induced_from(x) ⇒ Object
-
.limit(*args) ⇒ Object
BigDecimal.limit(digits).
-
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value).
-
.new(*args) ⇒ Object
new(initial, digits).
-
.ver ⇒ Object
Returns the BigDecimal version number.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#*(r) ⇒ Object
mult(value, digits).
-
#**(p) ⇒ Object
power(n).
-
#+(r) ⇒ Object
add(value, digits).
- #+@ ⇒ Object
-
#-(r) ⇒ Object
sub(value, digits).
- #-@ ⇒ Object
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(r) ⇒ Object
a < b.
-
#<=(r) ⇒ Object
a <= b.
-
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(r) ⇒ Object
a > b.
-
#>=(r) ⇒ Object
a >= b.
- #_dump(*args) ⇒ Object
-
#abs ⇒ Object
Returns the absolute value.
- #add(b, n) ⇒ Object
-
#ceil(*args) ⇒ Object
ceil(n).
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
- #div(*args) ⇒ Object
-
#divmod(r) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers.
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number.
-
#floor(*args) ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number.
- #hash ⇒ Object
-
#infinite? ⇒ Boolean
Returns True if the value is infinite.
-
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
- #mult(b, n) ⇒ Object
-
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns True if the value is non-zero.
-
#power(p) ⇒ Object
power(n).
-
#precs ⇒ Object
precs.
-
#quo ⇒ Object
For c = self/r: with round operation.
-
#remainder ⇒ Object
remainder.
-
#round(*args) ⇒ Object
round(n,mode).
-
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(nFig) ⇒ Object
sqrt(n).
- #sub(b, n) ⇒ Object
-
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form “nnnnnn.mmm”.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(*args) ⇒ Object
to_s(s).
-
#truncate(*args) ⇒ Object
truncate(n).
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
# File 'bigdecimal.c', line 325 static VALUE BigDecimal_load(VALUE self, VALUE str) { ENTER(2); Real *pv; unsigned char *pch; unsigned char ch; unsigned long m=0; SafeStringValue(str); pch = (unsigned char *)RSTRING_PTR(str); /* First get max prec */ while((*pch)!=(unsigned char)'\0' && (ch=*pch++)!=(unsigned char)':') { if(!ISDIGIT(ch)) { rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); } m = m*10 + (unsigned long)(ch-'0'); } if(m>VpBaseFig()) m -= VpBaseFig(); GUARD_OBJ(pv,VpNewRbClass(m,(char *)pch,self)); m /= VpBaseFig(); if(m && pv->MaxPrec>m) pv->MaxPrec = m+1; return ToValue(pv); } |
.double_fig ⇒ Object
BigDecimal.double_fig
The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.
257 258 259 260 261 |
# File 'bigdecimal.c', line 257 static VALUE BigDecimal_double_fig(VALUE self) { return INT2FIX(VpDblFig()); } |
.induced_from(x) ⇒ Object
573 574 575 576 577 578 |
# File 'bigdecimal.c', line 573 static VALUE BigDecimal_induced_from(VALUE self, VALUE x) { Real *p = GetVpValue(x,1); return p->obj; } |
.limit(*args) ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 |
# File 'bigdecimal.c', line 1729 static VALUE BigDecimal_limit(int argc, VALUE *argv, VALUE self) { VALUE nFig; VALUE nCur = INT2NUM(VpGetPrecLimit()); if(rb_scan_args(argc,argv,"01",&nFig)==1) { int nf; if(nFig==Qnil) return nCur; Check_Type(nFig, T_FIXNUM); nf = FIX2INT(nFig); if(nf<0) { rb_raise(rb_eArgError, "argument must be positive"); } VpSetPrecLimit(nf); } return nCur; } |
.mode(*args) ⇒ Object
BigDecimal.mode(mode, value)
Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.
Six values of the mode parameter control the handling of arithmetic exceptions:
BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL
For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:
- EXCEPTION_NaN
-
NaN
- EXCEPTION_INFINITY
-
+infinity or -infinity
- EXCEPTION_UNDERFLOW
-
0
- EXCEPTION_OVERFLOW
-
+infinity or -infinity
- EXCEPTION_ZERODIVIDE
-
+infinity or -infinity
One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:
- ROUND_UP
-
round away from zero
- ROUND_DOWN
-
round towards zero (truncate)
- ROUND_HALF_UP
-
round up if the appropriate digit >= 5, otherwise truncate (default)
- ROUND_HALF_DOWN
-
round up if the appropriate digit >= 6, otherwise truncate
- ROUND_HALF_EVEN
-
round towards the even neighbor (Banker’s rounding)
- ROUND_CEILING
-
round towards positive infinity (ceil)
- ROUND_FLOOR
-
round towards negative infinity (floor)
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
# File 'bigdecimal.c', line 388 static VALUE BigDecimal_mode(int argc, VALUE *argv, VALUE self) { VALUE which; VALUE val; unsigned long f,fo; if(rb_scan_args(argc,argv,"11",&which,&val)==1) val = Qnil; Check_Type(which, T_FIXNUM); f = (unsigned long)FIX2INT(which); if(f&VP_EXCEPTION_ALL) { /* Exception mode setting */ fo = VpGetException(); if(val==Qnil) return INT2FIX(fo); if(val!=Qfalse && val!=Qtrue) { rb_raise(rb_eTypeError, "second argument must be true or false"); return Qnil; /* Not reached */ } if(f&VP_EXCEPTION_INFINITY) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_INFINITY): (fo&(~VP_EXCEPTION_INFINITY)))); } if(f&VP_EXCEPTION_NaN) { VpSetException((unsigned short)((val==Qtrue)?(fo|VP_EXCEPTION_NaN): (fo&(~VP_EXCEPTION_NaN)))); } fo = VpGetException(); return INT2FIX(fo); } if(VP_ROUND_MODE==f) { /* Rounding mode setting */ fo = VpGetRoundMode(); if(val==Qnil) return INT2FIX(fo); Check_Type(val, T_FIXNUM); if(!VpIsRoundMode(FIX2INT(val))) { rb_raise(rb_eTypeError, "invalid rounding mode"); return Qnil; } fo = VpSetRoundMode((unsigned long)FIX2INT(val)); return INT2FIX(fo); } rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid"); return Qnil; } |
.new(*args) ⇒ Object
new(initial, digits)
Create a new BigDecimal object.
- initial
-
The initial value, as a String. Spaces are ignored, unrecognized characters terminate the value.
- digits
-
The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.
The actual number of significant digits used in computation is usually larger than the specified number.
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 |
# File 'bigdecimal.c', line 1698 static VALUE BigDecimal_new(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *pv; S_LONG mf; VALUE nFig; VALUE iniValue; if(rb_scan_args(argc,argv,"11",&iniValue,&nFig)==1) { mf = 0; } else { mf = GetPositiveInt(nFig); } SafeStringValue(iniValue); GUARD_OBJ(pv,VpNewRbClass(mf, RSTRING_PTR(iniValue),self)); return ToValue(pv); } |
.ver ⇒ Object
Returns the BigDecimal version number.
Ruby 1.8.0 returns 1.0.0. Ruby 1.8.1 thru 1.8.3 return 1.0.1.
162 163 164 165 166 167 168 169 170 |
# File 'bigdecimal.c', line 162 static VALUE BigDecimal_version(VALUE self) { /* * 1.0.0: Ruby 1.8.0 * 1.0.1: Ruby 1.8.1 */ return rb_str_new2("1.0.1"); } |
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
# File 'bigdecimal.c', line 996 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); VALUE obj; Real *div=NULL, *mod=NULL; obj = BigDecimal_DoDivmod(self,r,&div,&mod); if(obj!=(VALUE)0) return obj; SAVE(div);SAVE(mod); return ToValue(mod); } |
#*(r) ⇒ Object
mult(value, digits)
Multiply by the specified value.
e.g.
c = a.mult(b,n)
c = a * b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 |
# File 'bigdecimal.c', line 857 static VALUE BigDecimal_mult(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r); SAVE(b); mx = a->Prec + b->Prec; GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); VpMult(c, a, b); return ToValue(c); } |
#**(p) ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
# File 'bigdecimal.c', line 1643 static VALUE BigDecimal_power(VALUE self, VALUE p) { ENTER(5); Real *x, *y; S_LONG mp, ma, n; Check_Type(p, T_FIXNUM); n = FIX2INT(p); ma = n; if(ma < 0) ma = -ma; if(ma == 0) ma = 1; GUARD_OBJ(x,GetVpValue(self,1)); if(VpIsDef(x)) { mp = x->Prec *(VpBaseFig() + 1); GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0")); } else { GUARD_OBJ(y,VpCreateRbObject(1, "0")); } VpPower(y, x, n); return ToValue(y); } |
#+(r) ⇒ Object
add(value, digits)
Add the specified value.
e.g.
c = a.add(b,n)
c = a + b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
# File 'bigdecimal.c', line 653 static VALUE BigDecimal_add(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r); SAVE(b); if(VpIsNaN(b)) return b->obj; if(VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if(mx==(-1L)) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, 1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); if(!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, 1); } } return ToValue(c); } |
#+@ ⇒ Object
636 637 638 639 640 |
# File 'bigdecimal.c', line 636 static VALUE BigDecimal_uplus(VALUE self) { return self; } |
#-(r) ⇒ Object
sub(value, digits)
Subtract the specified value.
e.g.
c = a.sub(b,n)
c = a - b
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 |
# File 'bigdecimal.c', line 691 static VALUE BigDecimal_sub(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); b = GetVpValue(r,0); if(!b) return DoSomeOne(self,r); SAVE(b); if(VpIsNaN(b)) return b->obj; if(VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if(mx==(-1L)) { GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); VpAddSub(c, a, b, -1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); if(!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, -1); } } return ToValue(c); } |
#-@ ⇒ Object
835 836 837 838 839 840 841 842 843 844 |
# File 'bigdecimal.c', line 835 static VALUE BigDecimal_neg(VALUE self) { ENTER(5); Real *c, *a; GUARD_OBJ(a,GetVpValue(self,1)); GUARD_OBJ(c,VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0")); VpAsgn(c, a, -1); return ToValue(c); } |
#/ ⇒ Object
For c = self/r: with round operation
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
# File 'bigdecimal.c', line 912 static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(&c, &res, &div, self, r); if(r!=(VALUE)0) return r; /* coerced by other */ SAVE(c);SAVE(res);SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]); } return ToValue(c); } |
#<(r) ⇒ Object
a < b
Returns true if a is less than b. Values may be coerced to perform the comparison (see ==, coerce).
793 794 795 796 797 |
# File 'bigdecimal.c', line 793 static VALUE BigDecimal_lt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '<'); } |
#<=(r) ⇒ Object
a <= b
Returns true if a is less than or equal to b. Values may be coerced to perform the comparison (see ==, coerce).
805 806 807 808 809 |
# File 'bigdecimal.c', line 805 static VALUE BigDecimal_le(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'L'); } |
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
765 766 767 768 769 |
# File 'bigdecimal.c', line 765 static VALUE BigDecimal_comp(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '*'); } |
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
781 782 783 784 785 |
# File 'bigdecimal.c', line 781 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
781 782 783 784 785 |
# File 'bigdecimal.c', line 781 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#>(r) ⇒ Object
a > b
Returns true if a is greater than b. Values may be coerced to perform the comparison (see ==, coerce).
817 818 819 820 821 |
# File 'bigdecimal.c', line 817 static VALUE BigDecimal_gt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '>'); } |
#>=(r) ⇒ Object
a >= b
Returns true if a is greater than or equal to b. Values may be coerced to perform the comparison (see ==, coerce)
829 830 831 832 833 |
# File 'bigdecimal.c', line 829 static VALUE BigDecimal_ge(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'G'); } |
#_dump(*args) ⇒ Object
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
# File 'bigdecimal.c', line 305 static VALUE BigDecimal_dump(int argc, VALUE *argv, VALUE self) { ENTER(5); char sz[50]; Real *vp; char *psz; VALUE dummy; rb_scan_args(argc, argv, "01", &dummy); GUARD_OBJ(vp,GetVpValue(self,1)); sprintf(sz,"%lu:",VpMaxPrec(vp)*VpBaseFig()); psz = ALLOCA_N(char,(unsigned int)VpNumOfChars(vp,"E")+strlen(sz)); sprintf(psz,"%s",sz); VpToString(vp, psz+strlen(psz), 0, 0); return rb_str_new2(psz); } |
#abs ⇒ Object
Returns the absolute value.
BigDecimal(‘5’).abs -> 5
BigDecimal(‘-3’).abs -> 3
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 |
# File 'bigdecimal.c', line 1189 static VALUE BigDecimal_abs(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpAsgn(c, a, 1); VpChangeSign(c,(S_INT)1); return ToValue(c); } |
#add(b, n) ⇒ Object
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 |
# File 'bigdecimal.c', line 1132 static VALUE BigDecimal_add2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_add(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_add(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } |
#ceil(*args) ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil -> 4
BigDecimal(‘-9.1’).ceil -> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) -> 3.142
BigDecimal(‘13345.234’).ceil(-2) -> 13400.0
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 |
# File 'bigdecimal.c', line 1432 static VALUE BigDecimal_ceil(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; int iLoc; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_CEIL,iLoc); return ToValue(c); } |
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g. a = BigDecimal.new(“1.0”) b = a / 2.0 -> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# File 'bigdecimal.c', line 621 static VALUE BigDecimal_coerce(VALUE self, VALUE other) { ENTER(2); VALUE obj; Real *b; if(TYPE(other) == T_FLOAT) { obj = rb_assoc_new(other, BigDecimal_to_f(self)); } else { GUARD_OBJ(b,GetVpValue(other,1)); obj = rb_assoc_new(b->obj, self); } return obj; } |
#div(*args) ⇒ Object
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
# File 'bigdecimal.c', line 1096 static VALUE BigDecimal_div2(int argc, VALUE *argv, VALUE self) { ENTER(5); VALUE b,n; int na = rb_scan_args(argc,argv,"11",&b,&n); if(na==1) { /* div in Float sense */ VALUE obj; Real *div=NULL; Real *mod; obj = BigDecimal_DoDivmod(self,b,&div,&mod); if(obj!=(VALUE)0) return obj; return ToValue(div); } else { /* div in BigDecimal sense */ U_LONG ix = (U_LONG)GetPositiveInt(n); if(ix==0) return BigDecimal_div(self,b); else { Real *res=NULL; Real *av=NULL, *bv=NULL, *cv=NULL; U_LONG mx = (ix+VpBaseFig()*2); U_LONG pl = VpSetPrecLimit(0); GUARD_OBJ(cv,VpCreateRbObject(mx,"0")); GUARD_OBJ(av,GetVpValue(self,1)); GUARD_OBJ(bv,GetVpValue(b,1)); mx = av->Prec + bv->Prec + 2; if(mx <= cv->MaxPrec) mx = cv->MaxPrec+1; GUARD_OBJ(res,VpCreateRbObject((mx * 2 + 2)*VpBaseFig(), "#0")); VpDivd(cv,res,av,bv); VpSetPrecLimit(pl); VpLeftRound(cv,VpGetRoundMode(),ix); return ToValue(cv); } } } |
#divmod(r) ⇒ Object
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require ‘bigdecimal’
a = BigDecimal.new(“42”) b = BigDecimal.new(“9”)
q,m = a.divmod(b)
c = q * b + m
a == c -> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 |
# File 'bigdecimal.c', line 1082 static VALUE BigDecimal_divmod(VALUE self, VALUE r) { ENTER(5); VALUE obj; Real *div=NULL, *mod=NULL; obj = BigDecimal_DoDivmod(self,r,&div,&mod); if(obj!=(VALUE)0) return obj; SAVE(div);SAVE(mod); obj = rb_assoc_new(ToValue(div), ToValue(mod)); return obj; } |
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal.new(‘1.0’) == 1.0 -> true
781 782 783 784 785 |
# File 'bigdecimal.c', line 781 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
1597 1598 1599 1600 1601 1602 |
# File 'bigdecimal.c', line 1597 static VALUE BigDecimal_exponent(VALUE self) { S_LONG e = VpExponent10(GetVpValue(self,1)); return INT2NUM(e); } |
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite)
504 505 506 507 508 509 510 511 |
# File 'bigdecimal.c', line 504 static VALUE BigDecimal_IsFinite(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsNaN(p)) return Qfalse; if(VpIsInf(p)) return Qfalse; return Qtrue; } |
#fix ⇒ Object
Return the integer part of the number.
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 |
# File 'bigdecimal.c', line 1230 static VALUE BigDecimal_fix(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpActiveRound(c,a,VP_ROUND_DOWN,0); /* 0: round off */ return ToValue(c); } |
#floor(*args) ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor -> 3
BigDecimal(‘-9.1’).floor -> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) -> 3.141
BigDecimal(‘13345.234’).floor(-2) -> 13300.0
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 |
# File 'bigdecimal.c', line 1388 static VALUE BigDecimal_floor(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; int iLoc; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_FLOOR,iLoc); return ToValue(c); } |
#frac ⇒ Object
Return the fractional part of the number.
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 |
# File 'bigdecimal.c', line 1355 static VALUE BigDecimal_frac(VALUE self) { ENTER(5); Real *c, *a; U_LONG mx; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpFrac(c, a); return ToValue(c); } |
#hash ⇒ Object
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
# File 'bigdecimal.c', line 285 static VALUE BigDecimal_hash(VALUE self) { ENTER(1); Real *p; U_LONG hash,i; GUARD_OBJ(p,GetVpValue(self,1)); hash = (U_LONG)p->sign; /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ if(hash==2) { for(i = 0; i < p->Prec;i++) { hash = 31 * hash + p->frac[i]; hash ^= p->frac[i]; } hash += p->exponent; } return INT2FIX(hash); } |
#infinite? ⇒ Boolean
Returns True if the value is infinite
494 495 496 497 498 499 500 501 |
# File 'bigdecimal.c', line 494 static VALUE BigDecimal_IsInfinite(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsPosInf(p)) return INT2FIX(1); if(VpIsNegInf(p)) return INT2FIX(-1); return Qnil; } |
#inspect ⇒ Object
Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:
BigDecimal.new(“1234.5678”).inspect -> “#<BigDecimal:b7ea1130,‘0.12345678E4’,8(12)>”
The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 |
# File 'bigdecimal.c', line 1614 static VALUE BigDecimal_inspect(VALUE self) { ENTER(5); Real *vp; VALUE obj; unsigned int nc; char *psz1; char *pszAll; GUARD_OBJ(vp,GetVpValue(self,1)); nc = VpNumOfChars(vp,"E"); nc +=(nc + 9) / 10; psz1 = ALLOCA_N(char,nc); pszAll = ALLOCA_N(char,nc+256); VpToString(vp, psz1, 10, 0); sprintf(pszAll,"#<BigDecimal:%lx,'%s',%lu(%lu)>",self,psz1,VpPrec(vp)*VpBaseFig(),VpMaxPrec(vp)*VpBaseFig()); obj = rb_str_new2(pszAll); return obj; } |
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
# File 'bigdecimal.c', line 996 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); VALUE obj; Real *div=NULL, *mod=NULL; obj = BigDecimal_DoDivmod(self,r,&div,&mod); if(obj!=(VALUE)0) return obj; SAVE(div);SAVE(mod); return ToValue(mod); } |
#mult(b, n) ⇒ Object
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 |
# File 'bigdecimal.c', line 1166 static VALUE BigDecimal_mult2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_mult(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_mult(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } |
#nan? ⇒ Boolean
Returns True if the value is Not a Number
485 486 487 488 489 490 491 |
# File 'bigdecimal.c', line 485 static VALUE BigDecimal_IsNaN(VALUE self) { Real *p = GetVpValue(self,1); if(VpIsNaN(p)) return Qtrue; return Qfalse; } |
#nonzero? ⇒ Boolean
Returns True if the value is non-zero.
755 756 757 758 759 760 |
# File 'bigdecimal.c', line 755 static VALUE BigDecimal_nonzero(VALUE self) { Real *a = GetVpValue(self,1); return VpIsZero(a) ? Qnil : self; } |
#power(p) ⇒ Object
power(n)
Returns the value raised to the power of n. Note that n must be an Integer.
Also available as the operator **
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
# File 'bigdecimal.c', line 1643 static VALUE BigDecimal_power(VALUE self, VALUE p) { ENTER(5); Real *x, *y; S_LONG mp, ma, n; Check_Type(p, T_FIXNUM); n = FIX2INT(p); ma = n; if(ma < 0) ma = -ma; if(ma == 0) ma = 1; GUARD_OBJ(x,GetVpValue(self,1)); if(VpIsDef(x)) { mp = x->Prec *(VpBaseFig() + 1); GUARD_OBJ(y,VpCreateRbObject(mp *(ma + 1), "0")); } else { GUARD_OBJ(y,VpCreateRbObject(1, "0")); } VpPower(y, x, n); return ToValue(y); } |
#precs ⇒ Object
precs
Returns an Array of two Integer values.
The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.
272 273 274 275 276 277 278 279 280 281 282 283 |
# File 'bigdecimal.c', line 272 static VALUE BigDecimal_prec(VALUE self) { ENTER(1); Real *p; VALUE obj; GUARD_OBJ(p,GetVpValue(self,1)); obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()), INT2NUM(p->MaxPrec*VpBaseFig())); return obj; } |
#quo ⇒ Object
For c = self/r: with round operation
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
# File 'bigdecimal.c', line 912 static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(&c, &res, &div, self, r); if(r!=(VALUE)0) return r; /* coerced by other */ SAVE(c);SAVE(res);SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if(VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c,0,c->frac[c->Prec-1],(VpBaseVal()*res->frac[0])/div->frac[0]); } return ToValue(c); } |
#remainder ⇒ Object
remainder
1053 1054 1055 1056 1057 1058 1059 1060 1061 |
# File 'bigdecimal.c', line 1053 static VALUE BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ { VALUE f; Real *d,*rv=0; f = BigDecimal_divremain(self,r,&d,&rv); if(f!=(VALUE)0) return f; return ToValue(rv); } |
#round(*args) ⇒ Object
round(n,mode)
Round to the nearest 1 (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).round -> 3
BigDecimal(‘8.7’).round -> 9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).round(3) -> 3.142
BigDecimal(‘13345.234’).round(-2) -> 13300.0
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 |
# File 'bigdecimal.c', line 1266 static VALUE BigDecimal_round(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc = 0; U_LONG mx; VALUE vLoc; VALUE vRound; U_LONG pl; int sw = VpGetRoundMode(); int na = rb_scan_args(argc,argv,"02",&vLoc,&vRound); switch(na) { case 0: iLoc = 0; break; case 1: Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); break; case 2: Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); Check_Type(vRound, T_FIXNUM); sw = FIX2INT(vRound); if(!VpIsRoundMode(sw)) { rb_raise(rb_eTypeError, "invalid rounding mode"); return Qnil; } break; } pl = VpSetPrecLimit(0); GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,sw,iLoc); return ToValue(c); } |
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
1764 1765 1766 1767 1768 1769 |
# File 'bigdecimal.c', line 1764 static VALUE BigDecimal_sign(VALUE self) { /* sign */ int s = GetVpValue(self,1)->sign; return INT2FIX(s); } |
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 |
# File 'bigdecimal.c', line 1564 static VALUE BigDecimal_split(VALUE self) { ENTER(5); Real *vp; VALUE obj,obj1; S_LONG e; S_LONG s; char *psz1; GUARD_OBJ(vp,GetVpValue(self,1)); psz1 = ALLOCA_N(char,(unsigned int)VpNumOfChars(vp,"E")); VpSzMantissa(vp,psz1); s = 1; if(psz1[0]=='-') { s = -1; ++psz1; } if(psz1[0]=='N') s=0; /* NaN */ e = VpExponent10(vp); obj1 = rb_str_new2(psz1); obj = rb_ary_new2(4); rb_ary_push(obj, INT2FIX(s)); rb_ary_push(obj, obj1); rb_ary_push(obj, INT2FIX(10)); rb_ary_push(obj, INT2NUM(e)); return obj; } |
#sqrt(nFig) ⇒ Object
sqrt(n)
Returns the square root of the value.
If n is specified, returns at least that many significant digits.
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 |
# File 'bigdecimal.c', line 1211 static VALUE BigDecimal_sqrt(VALUE self, VALUE nFig) { ENTER(5); Real *c, *a; S_INT mx, n; GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); n = GetPositiveInt(nFig) + VpDblFig() + 1; if(mx <= n) mx = n; GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSqrt(c, a); return ToValue(c); } |
#sub(b, n) ⇒ Object
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 |
# File 'bigdecimal.c', line 1149 static VALUE BigDecimal_sub2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; U_LONG mx = (U_LONG)GetPositiveInt(n); if(mx==0) return BigDecimal_sub(self,b); else { U_LONG pl = VpSetPrecLimit(0); VALUE c = BigDecimal_sub(self,b); VpSetPrecLimit(pl); GUARD_OBJ(cv,GetVpValue(c,1)); VpLeftRound(cv,VpGetRoundMode(),mx); return ToValue(cv); } } |
#to_digits ⇒ Object
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
33 34 35 36 37 38 39 40 41 |
# File 'lib/bigdecimal/util.rb', line 33 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s s,f,y,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
# File 'bigdecimal.c', line 584 static VALUE BigDecimal_to_f(VALUE self) { ENTER(1); Real *p; double d; S_LONG e; char *buf; GUARD_OBJ(p,GetVpValue(self,1)); if(VpVtoD(&d, &e, p)!=1) return rb_float_new(d); buf = ALLOCA_N(char,(unsigned int)VpNumOfChars(p,"E")); VpToString(p, buf, 0, 0); errno = 0; d = strtod(buf, 0); if(errno == ERANGE) { VpException(VP_EXCEPTION_OVERFLOW,"BigDecimal to Float conversion",0); if(d>0.0) return rb_float_new(DBL_MAX); else return rb_float_new(-DBL_MAX); } return rb_float_new(d); } |
#to_i ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
# File 'bigdecimal.c', line 517 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); int e,n,i,nf; U_LONG v,b,j; char *psz,*pch; Real *p; GUARD_OBJ(p,GetVpValue(self,1)); /* Infinity or NaN not converted. */ if(VpIsNaN(p)) { VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0); return Qnil; } else if(VpIsPosInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0); return Qnil; } else if(VpIsNegInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0); return Qnil; } e = VpExponent10(p); if(e<=0) return INT2FIX(0); nf = VpBaseFig(); if(e<=nf) { e = VpGetSign(p)*p->frac[0]; return INT2FIX(e); } psz = ALLOCA_N(char,(unsigned int)(e+nf+2)); n = (e+nf-1)/nf; pch = psz; if(VpGetSign(p)<0) *pch++ = '-'; for(i=0;i<n;++i) { b = VpBaseVal()/10; if(i>=(int)p->Prec) { while(b) { *pch++ = '0'; b /= 10; } continue; } v = p->frac[i]; while(b) { j = v/b; *pch++ = (char)(j + '0'); v -= j*b; b /= 10; } } *pch++ = 0; return rb_cstr2inum(psz,10); } |
#to_int ⇒ Object
Returns the value as an integer (Fixnum or Bignum).
If the BigNumber is infinity or NaN, returns nil.
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
# File 'bigdecimal.c', line 517 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); int e,n,i,nf; U_LONG v,b,j; char *psz,*pch; Real *p; GUARD_OBJ(p,GetVpValue(self,1)); /* Infinity or NaN not converted. */ if(VpIsNaN(p)) { VpException(VP_EXCEPTION_NaN,"Computation results to 'NaN'(Not a Number)",0); return Qnil; } else if(VpIsPosInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to 'Infinity'",0); return Qnil; } else if(VpIsNegInf(p)) { VpException(VP_EXCEPTION_INFINITY,"Computation results to '-Infinity'",0); return Qnil; } e = VpExponent10(p); if(e<=0) return INT2FIX(0); nf = VpBaseFig(); if(e<=nf) { e = VpGetSign(p)*p->frac[0]; return INT2FIX(e); } psz = ALLOCA_N(char,(unsigned int)(e+nf+2)); n = (e+nf-1)/nf; pch = psz; if(VpGetSign(p)<0) *pch++ = '-'; for(i=0;i<n;++i) { b = VpBaseVal()/10; if(i>=(int)p->Prec) { while(b) { *pch++ = '0'; b /= 10; } continue; } v = p->frac[i]; while(b) { j = v/b; *pch++ = (char)(j + '0'); v -= j*b; b /= 10; } } *pch++ = 0; return rb_cstr2inum(psz,10); } |
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
44 45 46 47 48 49 50 51 52 53 |
# File 'lib/bigdecimal/util.rb', line 44 def to_r sign,digits,base,power = self.split numerator = sign*digits.to_i denomi_power = power - digits.size # base is always 10 if denomi_power < 0 Rational(numerator,base ** (-denomi_power)) else Rational(numerator * (base ** denomi_power),1) end end |
#to_s(*args) ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal.new(‘-123.45678901234567890’).to_s(‘5F’) -> ‘-123.45678 90123 45678 9’
BigDecimal.new(‘123.45678901234567890’).to_s(‘+8F’) -> ‘+123.45678901 23456789’
BigDecimal.new(‘123.45678901234567890’).to_s(‘ F’) -> ‘ 123.4567890123456789’
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 |
# File 'bigdecimal.c', line 1487 static VALUE BigDecimal_to_s(int argc, VALUE *argv, VALUE self) { ENTER(5); int fmt=0; /* 0:E format */ int fPlus=0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */ Real *vp; char *psz; char ch; U_LONG nc; S_INT mc = 0; VALUE f; GUARD_OBJ(vp,GetVpValue(self,1)); if(rb_scan_args(argc,argv,"01",&f)==1) { if(TYPE(f)==T_STRING) { SafeStringValue(f); psz = RSTRING_PTR(f); if(*psz==' ') { fPlus = 1; psz++; } else if(*psz=='+') { fPlus = 2; psz++; } while((ch=*psz++)!=0) { if(ISSPACE(ch)) continue; if(!ISDIGIT(ch)) { if(ch=='F' || ch=='f') fmt = 1; /* F format */ break; } mc = mc * 10 + ch - '0'; } } else { mc = GetPositiveInt(f); } } if(fmt) { nc = VpNumOfChars(vp,"F"); } else { nc = VpNumOfChars(vp,"E"); } if(mc>0) nc += (nc + mc - 1) / mc + 1; psz = ALLOCA_N(char,(unsigned int)nc); if(fmt) { VpToFString(vp, psz, mc, fPlus); } else { VpToString (vp, psz, mc, fPlus); } return rb_str_new2(psz); } |
#truncate(*args) ⇒ Object
truncate(n)
Truncate to the nearest 1, returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate -> 3
BigDecimal(‘8.7’).truncate -> 8
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) -> 3.141
BigDecimal(‘13345.234’).truncate(-2) -> 13300.0
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 |
# File 'bigdecimal.c', line 1328 static VALUE BigDecimal_truncate(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; U_LONG mx; VALUE vLoc; U_LONG pl = VpSetPrecLimit(0); if(rb_scan_args(argc,argv,"01",&vLoc)==0) { iLoc = 0; } else { Check_Type(vLoc, T_FIXNUM); iLoc = FIX2INT(vLoc); } GUARD_OBJ(a,GetVpValue(self,1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c,VpCreateRbObject(mx, "0")); VpSetPrecLimit(pl); VpActiveRound(c,a,VP_ROUND_DOWN,iLoc); /* 0: truncate */ return ToValue(c); } |
#zero? ⇒ Boolean
Returns True if the value is zero.
747 748 749 750 751 752 |
# File 'bigdecimal.c', line 747 static VALUE BigDecimal_zero(VALUE self) { Real *a = GetVpValue(self,1); return VpIsZero(a) ? Qtrue : Qfalse; } |