Class: Numeric

Inherits:
Object show all
Includes:
Comparable
Defined in:
numeric.c

Direct Known Subclasses

Float, Integer

Instance Method Summary collapse

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?

Instance Method Details

#+Numeric

Unary Plus—Returns the receiver’s value.

Returns:



218
219
220
# File 'numeric.c', line 218

static VALUE
num_uplus(num)
VALUE num;

#-Numeric

Unary Minus—Returns the receiver’s value, negated.

Returns:



232
233
234
# File 'numeric.c', line 232

static VALUE
num_uminus(num)
VALUE num;

#<=>(other) ⇒ 0?

Returns zero if num equals other, nil otherwise.

Returns:

  • (0, nil)


801
802
803
# File 'numeric.c', line 801

static VALUE
num_cmp(x, y)
VALUE x, y;

#absNumeric

Returns the absolute value of num.

12.abs         #=> 12
(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Returns:



395
396
397
# File 'numeric.c', line 395

static VALUE
num_abs(num)
VALUE num;

#ceilInteger

Returns the smallest Integer greater than or equal to num. Class Numeric achieves this by converting itself to a Float then invoking Float#ceil.

1.ceil        #=> 1
1.2.ceil      #=> 2
(-1.2).ceil   #=> -1
(-1.0).ceil   #=> -1

Returns:



1366
1367
1368
# File 'numeric.c', line 1366

static VALUE
num_ceil(num)
VALUE num;

#coerce(numeric) ⇒ Array

If aNumeric is the same type as num, returns an array containing aNumeric and num. Otherwise, returns an array with both aNumeric and num represented as Float objects. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.

1.coerce(2.5)   #=> [2.5, 1.0]
1.2.coerce(3)   #=> [3.0, 1.2]
1.coerce(2)     #=> [2, 1]

Returns:



99
100
101
# File 'numeric.c', line 99

static VALUE
num_coerce(x, y)
VALUE x, y;

#div(numeric) ⇒ Integer

Uses / to perform division, then converts the result to an integer. Numeric does not define the / operator; this is left to subclasses.

Returns:



270
271
272
# File 'numeric.c', line 270

static VALUE
num_div(x, y)
VALUE x, y;

#divmod(aNumeric) ⇒ Array

Returns an array containing the quotient and modulus obtained by dividing num by aNumeric. If q, r = x.divmod(y), then

q = floor(float(x)/float(y))
x = q*y + r

The quotient is rounded toward -infinity, as shown in the following table:

 a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
 13   |  4  |   3,    1     |   3     |    1        |     1
------+-----+---------------+---------+-------------+---------------
 13   | -4  |  -4,   -3     |  -3     |   -3        |     1
------+-----+---------------+---------+-------------+---------------
-13   |  4  |  -4,    3     |  -4     |    3        |    -1
------+-----+---------------+---------+-------------+---------------
-13   | -4  |   3,   -1     |   3     |   -1        |    -1
------+-----+---------------+---------+-------------+---------------
 11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
------+-----+---------------+---------+-------------+---------------
 11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
------+-----+---------------+---------+-------------+---------------
-11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4  |   2    -3.5   |   2.875 |   -3.5      |    -3.5

Examples

11.divmod(3)         #=> [3, 2]
11.divmod(-3)        #=> [-4, -1]
11.divmod(3.5)       #=> [3, 0.5]
(-11).divmod(3.5)    #=> [-4, 3.0]
(11.5).divmod(3.5)   #=> [3, 1.0]

Returns:



319
320
321
# File 'numeric.c', line 319

static VALUE
num_divmod(x, y)
VALUE x, y;

#eql?(numeric) ⇒ Boolean

Returns true if num and numeric are the same type and have equal values.

1 == 1.0          #=> true
1.eql?(1.0)       #=> false
(1.0).eql?(1.0)   #=> true

Returns:

  • (Boolean)


784
785
786
# File 'numeric.c', line 784

static VALUE
num_eql(x, y)
VALUE x, y;

#floorInteger

Returns the largest integer less than or equal to num. Numeric implements this by converting anInteger to a Float and invoking Float#floor.

1.floor      #=> 1
(-1).floor   #=> -1

Returns:



1343
1344
1345
# File 'numeric.c', line 1343

static VALUE
num_floor(num)
VALUE num;

#initialize_copyObject

:nodoc:



202
203
204
# File 'numeric.c', line 202

static VALUE
num_init_copy(x, y)
VALUE x, y;

#integer?Boolean

Returns true if num is an Integer (including Fixnum and Bignum).

Returns:

  • (Boolean)


377
378
379
# File 'numeric.c', line 377

static VALUE
num_int_p(num)
VALUE num;

#modulo(numeric) ⇒ Object

Equivalent to num.divmod(aNumeric)[1].



334
335
336
# File 'numeric.c', line 334

static VALUE
num_modulo(x, y)
VALUE x, y;

#nonzero?Numeric?

Returns num if num is not zero, nil otherwise. This behavior is useful when chaining comparisons:

a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b   #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Returns:



436
437
438
# File 'numeric.c', line 436

static VALUE
num_nonzero_p(num)
VALUE num;

#quo(numeric) ⇒ Object

Equivalent to Numeric#/, but overridden in subclasses.



251
252
253
# File 'numeric.c', line 251

static VALUE
num_quo(x, y)
VALUE x, y;

#remainder(numeric) ⇒ Object

If num and numeric have different signs, returns mod-numeric; otherwise, returns mod. In both cases mod is the value num.modulo(numeric). The differences between remainder and modulo (%) are shown in the table under Numeric#divmod.



353
354
355
# File 'numeric.c', line 353

static VALUE
num_remainder(x, y)
VALUE x, y;

#roundInteger

Rounds num to the nearest integer. Numeric implements this by converting itself to a Float and invoking Float#round.

Returns:



1382
1383
1384
# File 'numeric.c', line 1382

static VALUE
num_round(num)
VALUE num;

#singleton_method_addedObject

Trap attempts to add methods to Numeric objects. Always raises a TypeError



188
189
190
# File 'numeric.c', line 188

static VALUE
num_sadded(x, name)
VALUE x, name;

#step(limit, step) {|i| ... } ⇒ Numeric

Invokes block with the sequence of numbers starting at num, incremented by step on each call. The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative). If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*epsilon)+ 1 times, where n = (limit - num)/step. Otherwise, the loop starts at num, uses either the < or > operator to compare the counter against limit, and increments itself using the + operator.

1.step(10, 2) { |i| print i, " " }
Math::E.step(Math::PI, 0.2) { |f| print f, " " }

produces:

1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905

Yields:

  • (i)

Returns:



1433
1434
1435
# File 'numeric.c', line 1433

static VALUE
num_step(argc, argv, from)
int argc;

#to_intInteger

Invokes the child class’s to_i method to convert num to an integer.

Returns:



454
455
456
# File 'numeric.c', line 454

static VALUE
num_to_int(num)
VALUE num;

#truncateInteger

Returns num truncated to an integer. Numeric implements this by converting its value to a float and invoking Float#truncate.

Returns:



1398
1399
1400
# File 'numeric.c', line 1398

static VALUE
num_truncate(num)
VALUE num;

#zero?Boolean

Returns true if num has a zero value.

Returns:

  • (Boolean)


413
414
415
# File 'numeric.c', line 413

static VALUE
num_zero_p(num)
VALUE num;