Class: Numeric

Inherits:
Object show all
Includes:
Comparable
Defined in:
numeric.c

Direct Known Subclasses

Float, Integer

Instance Method Summary collapse

Methods included from Comparable

#<, #<=, #==, #>, #>=, #between?

Instance Method Details

#+Numeric

Unary Plus—Returns the receiver’s value.

Returns:



237
238
239
# File 'numeric.c', line 237

static VALUE
num_uplus(num)
VALUE num;

#-Numeric

Unary Minus—Returns the receiver’s value, negated.

Returns:



251
252
253
# File 'numeric.c', line 251

static VALUE
num_uminus(num)
VALUE num;

#<=>(other) ⇒ 0?

Returns zero if num equals other, nil otherwise.

Returns:

  • (0, nil)


824
825
826
# File 'numeric.c', line 824

static VALUE
num_cmp(x, y)
VALUE x, y;

#absNumeric

Returns the absolute value of num.

12.abs         #=> 12
(-34.56).abs   #=> 34.56
-34.56.abs     #=> 34.56

Returns:



415
416
417
# File 'numeric.c', line 415

static VALUE
num_abs(num)
VALUE num;

#ceilInteger

Returns the smallest Integer greater than or equal to num. Class Numeric achieves this by converting itself to a Float then invoking Float#ceil.

1.ceil        #=> 1
1.2.ceil      #=> 2
(-1.2).ceil   #=> -1
(-1.0).ceil   #=> -1

Returns:



1388
1389
1390
# File 'numeric.c', line 1388

static VALUE
num_ceil(num)
VALUE num;

#coerce(numeric) ⇒ Array

If aNumeric is the same type as num, returns an array containing aNumeric and num. Otherwise, returns an array with both aNumeric and num represented as Float objects. This coercion mechanism is used by Ruby to handle mixed-type numeric operations: it is intended to find a compatible common type between the two operands of the operator.

1.coerce(2.5)   #=> [2.5, 1.0]
1.2.coerce(3)   #=> [3.0, 1.2]
1.coerce(2)     #=> [2, 1]

Returns:



118
119
120
# File 'numeric.c', line 118

static VALUE
num_coerce(x, y)
VALUE x, y;

#div(numeric) ⇒ Integer

Uses / to perform division, then converts the result to an integer. Numeric does not define the / operator; this is left to subclasses.

Returns:



290
291
292
# File 'numeric.c', line 290

static VALUE
num_div(x, y)
VALUE x, y;

#divmod(aNumeric) ⇒ Array

Returns an array containing the quotient and modulus obtained by dividing num by aNumeric. If q, r = x.divmod(y), then

q = floor(float(x)/float(y))
x = q*y + r

The quotient is rounded toward -infinity, as shown in the following table:

 a    |  b  |  a.divmod(b)  |   a/b   | a.modulo(b) | a.remainder(b)
------+-----+---------------+---------+-------------+---------------
 13   |  4  |   3,    1     |   3     |    1        |     1
------+-----+---------------+---------+-------------+---------------
 13   | -4  |  -4,   -3     |  -3     |   -3        |     1
------+-----+---------------+---------+-------------+---------------
-13   |  4  |  -4,    3     |  -4     |    3        |    -1
------+-----+---------------+---------+-------------+---------------
-13   | -4  |   3,   -1     |   3     |   -1        |    -1
------+-----+---------------+---------+-------------+---------------
 11.5 |  4  |   2,    3.5   |   2.875 |    3.5      |     3.5
------+-----+---------------+---------+-------------+---------------
 11.5 | -4  |  -3,   -0.5   |  -2.875 |   -0.5      |     3.5
------+-----+---------------+---------+-------------+---------------
-11.5 |  4  |  -3,    0.5   |  -2.875 |    0.5      |    -3.5
------+-----+---------------+---------+-------------+---------------
-11.5 | -4  |   2    -3.5   |   2.875 |   -3.5      |    -3.5

Examples

11.divmod(3)         #=> [3, 2]
11.divmod(-3)        #=> [-4, -1]
11.divmod(3.5)       #=> [3, 0.5]
(-11).divmod(3.5)    #=> [-4, 3.0]
(11.5).divmod(3.5)   #=> [3, 1.0]

Returns:



339
340
341
# File 'numeric.c', line 339

static VALUE
num_divmod(x, y)
VALUE x, y;

#eql?(numeric) ⇒ Boolean

Returns true if num and numeric are the same type and have equal values.

1 == 1.0          #=> true
1.eql?(1.0)       #=> false
(1.0).eql?(1.0)   #=> true

Returns:

  • (Boolean)


807
808
809
# File 'numeric.c', line 807

static VALUE
num_eql(x, y)
VALUE x, y;

#quo(numeric) ⇒ Object #fdiv(numeric) ⇒ Object

Equivalent to Numeric#/, but overridden in subclasses.



271
272
273
# File 'numeric.c', line 271

static VALUE
num_quo(x, y)
VALUE x, y;

#floorInteger

Returns the largest integer less than or equal to num. Numeric implements this by converting anInteger to a Float and invoking Float#floor.

1.floor      #=> 1
(-1).floor   #=> -1

Returns:



1365
1366
1367
# File 'numeric.c', line 1365

static VALUE
num_floor(num)
VALUE num;

#initialize_copyObject

:nodoc:



221
222
223
# File 'numeric.c', line 221

static VALUE
num_init_copy(x, y)
VALUE x, y;

#integer?Boolean

Returns true if num is an Integer (including Fixnum and Bignum).

Returns:

  • (Boolean)


397
398
399
# File 'numeric.c', line 397

static VALUE
num_int_p(num)
VALUE num;

#modulo(numeric) ⇒ Object

Equivalent to num.divmod(aNumeric)[1].



354
355
356
# File 'numeric.c', line 354

static VALUE
num_modulo(x, y)
VALUE x, y;

#nonzero?Numeric?

Returns num if num is not zero, nil otherwise. This behavior is useful when chaining comparisons:

a = %w( z Bb bB bb BB a aA Aa AA A )
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b   #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Returns:



456
457
458
# File 'numeric.c', line 456

static VALUE
num_nonzero_p(num)
VALUE num;

#quo(numeric) ⇒ Object #fdiv(numeric) ⇒ Object

Equivalent to Numeric#/, but overridden in subclasses.



271
272
273
# File 'numeric.c', line 271

static VALUE
num_quo(x, y)
VALUE x, y;

#remainder(numeric) ⇒ Object

If num and numeric have different signs, returns mod-numeric; otherwise, returns mod. In both cases mod is the value num.modulo(numeric). The differences between remainder and modulo (%) are shown in the table under Numeric#divmod.



373
374
375
# File 'numeric.c', line 373

static VALUE
num_remainder(x, y)
VALUE x, y;

#roundInteger

Rounds num to the nearest integer. Numeric implements this by converting itself to a Float and invoking Float#round.

Returns:



1404
1405
1406
# File 'numeric.c', line 1404

static VALUE
num_round(num)
VALUE num;

#singleton_method_addedObject

Trap attempts to add methods to Numeric objects. Always raises a TypeError



207
208
209
# File 'numeric.c', line 207

static VALUE
num_sadded(x, name)
VALUE x, name;

#step(limit, step) {|i| ... } ⇒ Numeric

Invokes block with the sequence of numbers starting at num, incremented by step on each call. The loop finishes when the value to be passed to the block is greater than limit (if step is positive) or less than limit (if step is negative). If all the arguments are integers, the loop operates using an integer counter. If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*epsilon)+ 1 times, where n = (limit - num)/step. Otherwise, the loop starts at num, uses either the < or > operator to compare the counter against limit, and increments itself using the + operator.

1.step(10, 2) { |i| print i, " " }
Math::E.step(Math::PI, 0.2) { |f| print f, " " }

produces:

1 3 5 7 9
2.71828182845905 2.91828182845905 3.11828182845905

Yields:

  • (i)

Returns:



1455
1456
1457
# File 'numeric.c', line 1455

static VALUE
num_step(argc, argv, from)
int argc;

#to_intInteger

Invokes the child class’s to_i method to convert num to an integer.

Returns:



474
475
476
# File 'numeric.c', line 474

static VALUE
num_to_int(num)
VALUE num;

#truncateInteger

Returns num truncated to an integer. Numeric implements this by converting its value to a float and invoking Float#truncate.

Returns:



1420
1421
1422
# File 'numeric.c', line 1420

static VALUE
num_truncate(num)
VALUE num;

#zero?Boolean

Returns true if num has a zero value.

Returns:

  • (Boolean)


433
434
435
# File 'numeric.c', line 433

static VALUE
num_zero_p(num)
VALUE num;