Class: Float
Overview
******************************************************************
Float objects represent inexact real numbers using the native
architecture's double-precision floating point representation.
Floating point has a different arithmetic and is an inexact number.
So you should know its esoteric system. See following:
- http://docs.sun.com/source/806-3568/ncg_goldberg.html
- https://github.com/rdp/ruby_tutorials_core/wiki/Ruby-Talk-FAQ#floats_imprecise
- http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
Constant Summary collapse
- ROUNDS =
-1:: Indeterminable 0:: Rounding towards zero 1:: Rounding to the nearest number 2:: Rounding towards positive infinity 3:: Rounding towards negative infinity
Deprecated, do not use. Represents the rounding mode for floating point addition at the start time. Usually defaults to 1, rounding to the nearest number. Other modes include
- RADIX =
The base of the floating point, or number of unique digits used to represent the number.
Usually defaults to 2 on most systems, which would represent a base-10 decimal.
INT2FIX(FLT_RADIX)
- MANT_DIG =
The number of base digits for the
double
data type.Usually defaults to 53.
INT2FIX(DBL_MANT_DIG)
- DIG =
The minimum number of significant decimal digits in a double-precision floating point.
Usually defaults to 15.
INT2FIX(DBL_DIG)
- MIN_EXP =
The smallest possible exponent value in a double-precision floating point.
Usually defaults to -1021.
INT2FIX(DBL_MIN_EXP)
- MAX_EXP =
The largest possible exponent value in a double-precision floating point.
Usually defaults to 1024.
INT2FIX(DBL_MAX_EXP)
- MIN_10_EXP =
The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to -307.
INT2FIX(DBL_MIN_10_EXP)
- MAX_10_EXP =
The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.
Usually defaults to 308.
INT2FIX(DBL_MAX_10_EXP)
- MIN =
:MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.
The smallest positive normalized number in a double-precision floating point. Usually defaults to 2.2250738585072014e-308. If the platform supports denormalized numbers, there are numbers between zero and Float
- MAX =
The largest possible integer in a double-precision floating point number.
Usually defaults to 1.7976931348623157e+308.
DBL2NUM(DBL_MAX)
- EPSILON =
The difference between 1 and the smallest double-precision floating point number greater than 1.
Usually defaults to 2.2204460492503131e-16.
DBL2NUM(DBL_EPSILON)
- INFINITY =
An expression representing positive infinity.
DBL2NUM(HUGE_VAL)
- NAN =
An expression representing a value which is “not a number”.
DBL2NUM(nan(""))
Instance Method Summary collapse
-
#%(y) ⇒ Object
Returns the modulo after division of
float
byother
. -
#*(other) ⇒ Float
Returns a new Float which is the product of
float
andother
. -
#**(other) ⇒ Float
Raises
float
to the power ofother
. -
#+(other) ⇒ Float
Returns a new Float which is the sum of
float
andother
. -
#-(other) ⇒ Float
Returns a new Float which is the difference of
float
andother
. -
#- ⇒ Float
Returns
float
, negated. -
#/(other) ⇒ Float
Returns a new Float which is the result of dividing
float
byother
. -
#<(real) ⇒ Boolean
Returns
true
iffloat
is less thanreal
. -
#<=(real) ⇒ Boolean
Returns
true
iffloat
is less than or equal toreal
. -
#<=>(real) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether
float
is less than, equal to, or greater thanreal
. - #== ⇒ Object
- #=== ⇒ Object
-
#>(real) ⇒ Boolean
Returns
true
iffloat
is greater thanreal
. -
#>=(real) ⇒ Boolean
Returns
true
iffloat
is greater than or equal toreal
. -
#abs ⇒ Object
Returns the absolute value of
float
. -
#angle ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#arg ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to
float
with a precision ofndigits
decimal digits (default: 0). -
#coerce(numeric) ⇒ Array
Returns an array with both
numeric
andfloat
represented as Float objects. -
#denominator ⇒ Integer
Returns the denominator (always positive).
-
#divmod(numeric) ⇒ Array
See Numeric#divmod.
- #eql? ⇒ Boolean
-
#fdiv(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#finite? ⇒ Boolean
Returns
true
iffloat
is a valid IEEE floating point number, i.e. -
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to
float
with a precision ofndigits
decimal digits (default: 0). -
#hash ⇒ Integer
Returns a hash code for this float.
-
#infinite? ⇒ -1, ...
Returns
nil
, -1, or 1 depending on whether the value is finite,-Infinity
, or+Infinity
. -
#magnitude ⇒ Object
Returns the absolute value of
float
. -
#modulo(y) ⇒ Object
Returns the modulo after division of
float
byother
. -
#nan? ⇒ Boolean
Returns
true
iffloat
is an invalid IEEE floating point number. -
#negative? ⇒ Boolean
Returns
true
iffloat
is less than 0. -
#next_float ⇒ Float
Returns the next representable floating point number.
-
#numerator ⇒ Integer
Returns the numerator.
-
#phase ⇒ Object
Returns 0 if the value is positive, pi otherwise.
-
#positive? ⇒ Boolean
Returns
true
iffloat
is greater than 0. -
#prev_float ⇒ Float
Returns the previous representable floating point number.
-
#quo(y) ⇒ Object
Returns
float / numeric
, same as Float#/. -
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|).
-
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns
float
rounded to the nearest value with a precision ofndigits
decimal digits (default: 0). -
#to_f ⇒ self
Since
float
is already a Float, returnsself
. -
#to_i ⇒ Object
Returns the
float
truncated to an Integer. -
#to_int ⇒ Object
Returns the
float
truncated to an Integer. -
#to_r ⇒ Object
Returns the value as a rational.
-
#to_s ⇒ String
(also: #inspect)
Returns a string containing a representation of
self
. -
#truncate([ndigits]) ⇒ Integer, Float
Returns
float
truncated (toward zero) to a precision ofndigits
decimal digits (default: 0). -
#zero? ⇒ Boolean
Returns
true
iffloat
is 0.0.
Methods inherited from Numeric
#+@, #abs2, #clone, #conj, #conjugate, #div, #dup, #i, #imag, #imaginary, #integer?, #nonzero?, #polar, #real, #real?, #rect, #rectangular, #remainder, #singleton_method_added, #step, #to_c
Methods included from Comparable
Instance Method Details
#%(other) ⇒ Float #modulo(other) ⇒ Float
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
# File 'numeric.c', line 1225
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#*(other) ⇒ Float
Returns a new Float which is the product of float
and other
.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 |
# File 'numeric.c', line 1071
VALUE
rb_float_mul(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '*');
}
}
|
#**(other) ⇒ Float
Raises float
to the power of other
.
2.0**3 #=> 8.0
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 |
# File 'numeric.c', line 1297
VALUE
rb_float_pow(VALUE x, VALUE y)
{
double dx, dy;
if (RB_TYPE_P(y, T_FIXNUM)) {
dx = RFLOAT_VALUE(x);
dy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
dx = RFLOAT_VALUE(x);
dy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
dx = RFLOAT_VALUE(x);
dy = RFLOAT_VALUE(y);
if (dx < 0 && dy != round(dy))
return rb_dbl_complex_new_polar_pi(pow(-dx, dy), dy);
}
else {
return rb_num_coerce_bin(x, y, idPow);
}
return DBL2NUM(pow(dx, dy));
}
|
#+(other) ⇒ Float
Returns a new Float which is the sum of float
and other
.
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 |
# File 'numeric.c', line 1023
VALUE
rb_float_plus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '+');
}
}
|
#-(other) ⇒ Float
Returns a new Float which is the difference of float
and other
.
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
# File 'numeric.c', line 1047
static VALUE
flo_minus(VALUE x, VALUE y)
{
if (RB_TYPE_P(y, T_FIXNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
}
else if (RB_TYPE_P(y, T_FLOAT)) {
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
}
else {
return rb_num_coerce_bin(x, y, '-');
}
}
|
#- ⇒ Float
Returns float
, negated.
1010 1011 1012 1013 1014 |
# File 'numeric.c', line 1010
VALUE
rb_float_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
|
#/(other) ⇒ Float
Returns a new Float which is the result of dividing float
by other
.
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 |
# File 'numeric.c', line 1125
VALUE
rb_float_div(VALUE x, VALUE y)
{
double num = RFLOAT_VALUE(x);
double den;
double ret;
if (RB_TYPE_P(y, T_FIXNUM)) {
den = FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
den = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
den = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '/');
}
ret = double_div_double(num, den);
return DBL2NUM(ret);
}
|
#<(real) ⇒ Boolean
Returns true
if float
is less than real
.
The result of NaN < NaN
is undefined, so an implementation-dependent value is returned.
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 |
# File 'numeric.c', line 1576
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) < 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '<');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a < b)?Qtrue:Qfalse;
}
|
#<=(real) ⇒ Boolean
Returns true
if float
is less than or equal to real
.
The result of NaN <= NaN
is undefined, so an implementation-dependent value is returned.
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 |
# File 'numeric.c', line 1613
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) <= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idLE);
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a <= b)?Qtrue:Qfalse;
}
|
#<=>(real) ⇒ -1, ...
Returns -1, 0, or +1 depending on whether float
is less than, equal to, or greater than real
. This is the basis for the tests in the Comparable module.
The result of NaN <=> NaN
is undefined, so an implementation-dependent value is returned.
nil
is returned if the two values are incomparable.
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 |
# File 'numeric.c', line 1454
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
VALUE i;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return LONG2FIX(-FIX2LONG(rel));
return rel;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
}
else {
if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
if (RTEST(i)) {
int j = rb_cmpint(i, x, y);
j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
return INT2FIX(j);
}
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, id_cmp);
}
return rb_dbl_cmp(a, b);
}
|
#== ⇒ Object
#=== ⇒ Object
#>(real) ⇒ Boolean
Returns true
if float
is greater than real
.
The result of NaN > NaN
is undefined, so an implementation-dependent value is returned.
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 |
# File 'numeric.c', line 1502
VALUE
rb_float_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) > 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, '>');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a > b)?Qtrue:Qfalse;
}
|
#>=(real) ⇒ Boolean
Returns true
if float
is greater than or equal to real
.
The result of NaN >= NaN
is undefined, so an implementation-dependent value is returned.
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 |
# File 'numeric.c', line 1539
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
VALUE rel = rb_integer_float_cmp(y, x);
if (FIXNUM_P(rel))
return -FIX2LONG(rel) >= 0 ? Qtrue : Qfalse;
return Qfalse;
}
else if (RB_TYPE_P(y, T_FLOAT)) {
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
}
else {
return rb_num_coerce_relop(x, y, idGE);
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a >= b)?Qtrue:Qfalse;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56
Float#magnitude is an alias for Float#abs.
1697 1698 1699 1700 1701 1702 |
# File 'numeric.c', line 1697
VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2265 2266 2267 2268 2269 2270 2271 2272 2273 |
# File 'complex.c', line 2265
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2265 2266 2267 2268 2269 2270 2271 2272 2273 |
# File 'complex.c', line 2265
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#ceil([ndigits]) ⇒ Integer, Float
Returns the smallest number greater than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.ceil #=> 2
2.0.ceil #=> 2
(-1.2).ceil #=> -1
(-2.0).ceil #=> -2
1.234567.ceil(2) #=> 1.24
1.234567.ceil(3) #=> 1.235
1.234567.ceil(4) #=> 1.2346
1.234567.ceil(5) #=> 1.23457
34567.89.ceil(-5) #=> 100000
34567.89.ceil(-4) #=> 40000
34567.89.ceil(-3) #=> 35000
34567.89.ceil(-2) #=> 34600
34567.89.ceil(-1) #=> 34570
34567.89.ceil(0) #=> 34568
34567.89.ceil(1) #=> 34567.9
34567.89.ceil(2) #=> 34567.89
34567.89.ceil(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(2.1 / 0.7).ceil #=> 4 (!)
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 |
# File 'numeric.c', line 2005
static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
int ndigits = 0;
if (rb_check_arity(argc, 0, 1)) {
ndigits = NUM2INT(argv[0]);
}
return rb_float_ceil(num, ndigits);
}
|
#coerce(numeric) ⇒ Array
Returns an array with both numeric
and float
represented as Float objects.
This is achieved by converting numeric
to a Float.
1.2.coerce(3) #=> [3.0, 1.2]
2.5.coerce(1.1) #=> [1.1, 2.5]
997 998 999 1000 1001 |
# File 'numeric.c', line 997
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
|
#denominator ⇒ Integer
Returns the denominator (always positive). The result is machine dependent.
See also Float#numerator.
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 |
# File 'rational.c', line 2103
VALUE
rb_float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
VALUE r;
if (isinf(d) || isnan(d))
return INT2FIX(1);
r = float_to_r(self);
if (canonicalization && k_integer_p(r)) {
return ONE;
}
return nurat_denominator(r);
}
|
#divmod(numeric) ⇒ Array
See Numeric#divmod.
42.0.divmod(6) #=> [7, 0.0]
42.0.divmod(5) #=> [8, 2.0]
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 |
# File 'numeric.c', line 1264
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, id_divmod);
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
|
#eql? ⇒ Boolean
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
1157 1158 1159 1160 1161 |
# File 'numeric.c', line 1157
static VALUE
flo_quo(VALUE x, VALUE y)
{
return num_funcall1(x, '/', y);
}
|
#finite? ⇒ Boolean
Returns true
if float
is a valid IEEE floating point number, i.e. it is not infinite and Float#nan? is false
.
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 |
# File 'numeric.c', line 1769
VALUE
rb_flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE
if (!isfinite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
|
#floor([ndigits]) ⇒ Integer, Float
Returns the largest number less than or equal to float
with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.2.floor #=> 1
2.0.floor #=> 2
(-1.2).floor #=> -2
(-2.0).floor #=> -2
1.234567.floor(2) #=> 1.23
1.234567.floor(3) #=> 1.234
1.234567.floor(4) #=> 1.2345
1.234567.floor(5) #=> 1.23456
34567.89.floor(-5) #=> 0
34567.89.floor(-4) #=> 30000
34567.89.floor(-3) #=> 34000
34567.89.floor(-2) #=> 34500
34567.89.floor(-1) #=> 34560
34567.89.floor(0) #=> 34567
34567.89.floor(1) #=> 34567.8
34567.89.floor(2) #=> 34567.89
34567.89.floor(3) #=> 34567.89
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).floor #=> 2 (!)
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 |
# File 'numeric.c', line 1936
static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
double number, f;
int ndigits = 0;
if (rb_check_arity(argc, 0, 1)) {
ndigits = NUM2INT(argv[0]);
}
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits > 0) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (number > 0.0 && float_round_underflow(ndigits, binexp))
return DBL2NUM(0.0);
f = pow(10, ndigits);
f = floor(number * f) / f;
return DBL2NUM(f);
}
else {
num = dbl2ival(floor(number));
if (ndigits < 0) num = rb_int_floor(num, ndigits);
return num;
}
}
|
#hash ⇒ Integer
Returns a hash code for this float.
See also Object#hash.
1418 1419 1420 1421 1422 |
# File 'numeric.c', line 1418
static VALUE
flo_hash(VALUE num)
{
return rb_dbl_hash(RFLOAT_VALUE(num));
}
|
#infinite? ⇒ -1, ...
Returns nil
, -1, or 1 depending on whether the value is finite, -Infinity
, or +Infinity
.
(0.0).infinite? #=> nil
(-1.0/0.0).infinite? #=> -1
(+1.0/0.0).infinite? #=> 1
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 |
# File 'numeric.c', line 1749
VALUE
rb_flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
|
#abs ⇒ Float #magnitude ⇒ Float
Returns the absolute value of float
.
(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56
Float#magnitude is an alias for Float#abs.
1697 1698 1699 1700 1701 1702 |
# File 'numeric.c', line 1697
VALUE
rb_float_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
|
#%(other) ⇒ Float #modulo(other) ⇒ Float
Returns the modulo after division of float
by other
.
6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 |
# File 'numeric.c', line 1225
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy;
if (RB_TYPE_P(y, T_FIXNUM)) {
fy = (double)FIX2LONG(y);
}
else if (RB_TYPE_P(y, T_BIGNUM)) {
fy = rb_big2dbl(y);
}
else if (RB_TYPE_P(y, T_FLOAT)) {
fy = RFLOAT_VALUE(y);
}
else {
return rb_num_coerce_bin(x, y, '%');
}
return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
|
#nan? ⇒ Boolean
Returns true
if float
is an invalid IEEE floating point number.
a = -1.0 #=> -1.0
a.nan? #=> false
a = 0.0/0.0 #=> NaN
a.nan? #=> true
1729 1730 1731 1732 1733 1734 1735 |
# File 'numeric.c', line 1729
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
|
#negative? ⇒ Boolean
Returns true
if float
is less than 0.
2419 2420 2421 2422 2423 2424 |
# File 'numeric.c', line 2419
static VALUE
flo_negative_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f < 0.0 ? Qtrue : Qfalse;
}
|
#next_float ⇒ Float
Returns the next representable floating point number.
Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
Float::NAN.next_float is Float::NAN.
For example:
0.01.next_float #=> 0.010000000000000002
1.0.next_float #=> 1.0000000000000002
100.0.next_float #=> 100.00000000000001
0.01.next_float - 0.01 #=> 1.734723475976807e-18
1.0.next_float - 1.0 #=> 2.220446049250313e-16
100.0.next_float - 100.0 #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147cp-7 0.010000000000000002
# 0x1.47ae147ae147dp-7 0.010000000000000004
# 0x1.47ae147ae147ep-7 0.010000000000000005
# 0x1.47ae147ae147fp-7 0.010000000000000007
# 0x1.47ae147ae148p-7 0.010000000000000009
# 0x1.47ae147ae1481p-7 0.01000000000000001
# 0x1.47ae147ae1482p-7 0.010000000000000012
# 0x1.47ae147ae1483p-7 0.010000000000000014
# 0x1.47ae147ae1484p-7 0.010000000000000016
# 0x1.47ae147ae1485p-7 0.010000000000000018
# 0x1.47ae147ae1486p-7 0.01000000000000002
# 0x1.47ae147ae1487p-7 0.010000000000000021
# 0x1.47ae147ae1488p-7 0.010000000000000023
# 0x1.47ae147ae1489p-7 0.010000000000000024
# 0x1.47ae147ae148ap-7 0.010000000000000026
# 0x1.47ae147ae148bp-7 0.010000000000000028
# 0x1.47ae147ae148cp-7 0.01000000000000003
# 0x1.47ae147ae148dp-7 0.010000000000000031
# 0x1.47ae147ae148ep-7 0.010000000000000033
f = 0.0
100.times { f += 0.1 }
f #=> 9.99999999999998 # should be 10.0 in the ideal world.
10-f #=> 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
(10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
"%a" % 10 #=> "0x1.4p+3"
"%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
1837 1838 1839 1840 1841 1842 1843 1844 |
# File 'numeric.c', line 1837
static VALUE
flo_next_float(VALUE vx)
{
double x, y;
x = NUM2DBL(vx);
y = nextafter(x, HUGE_VAL);
return DBL2NUM(y);
}
|
#numerator ⇒ Integer
Returns the numerator. The result is machine dependent.
n = 0.3.numerator #=> 5404319552844595
d = 0.3.denominator #=> 18014398509481984
n.fdiv(d) #=> 0.3
See also Float#denominator.
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 |
# File 'rational.c', line 2080
VALUE
rb_float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
VALUE r;
if (isinf(d) || isnan(d))
return self;
r = float_to_r(self);
if (canonicalization && k_integer_p(r)) {
return r;
}
return nurat_numerator(r);
}
|
#arg ⇒ 0, Float #angle ⇒ 0, Float #phase ⇒ 0, Float
Returns 0 if the value is positive, pi otherwise.
2265 2266 2267 2268 2269 2270 2271 2272 2273 |
# File 'complex.c', line 2265
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
|
#positive? ⇒ Boolean
Returns true
if float
is greater than 0.
2405 2406 2407 2408 2409 2410 |
# File 'numeric.c', line 2405
static VALUE
flo_positive_p(VALUE num)
{
double f = RFLOAT_VALUE(num);
return f > 0.0 ? Qtrue : Qfalse;
}
|
#prev_float ⇒ Float
Returns the previous representable floating point number.
(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
Float::NAN.prev_float is Float::NAN.
For example:
0.01.prev_float #=> 0.009999999999999998
1.0.prev_float #=> 0.9999999999999999
100.0.prev_float #=> 99.99999999999999
0.01 - 0.01.prev_float #=> 1.734723475976807e-18
1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147ap-7 0.009999999999999998
# 0x1.47ae147ae1479p-7 0.009999999999999997
# 0x1.47ae147ae1478p-7 0.009999999999999995
# 0x1.47ae147ae1477p-7 0.009999999999999993
# 0x1.47ae147ae1476p-7 0.009999999999999992
# 0x1.47ae147ae1475p-7 0.00999999999999999
# 0x1.47ae147ae1474p-7 0.009999999999999988
# 0x1.47ae147ae1473p-7 0.009999999999999986
# 0x1.47ae147ae1472p-7 0.009999999999999985
# 0x1.47ae147ae1471p-7 0.009999999999999983
# 0x1.47ae147ae147p-7 0.009999999999999981
# 0x1.47ae147ae146fp-7 0.00999999999999998
# 0x1.47ae147ae146ep-7 0.009999999999999978
# 0x1.47ae147ae146dp-7 0.009999999999999976
# 0x1.47ae147ae146cp-7 0.009999999999999974
# 0x1.47ae147ae146bp-7 0.009999999999999972
# 0x1.47ae147ae146ap-7 0.00999999999999997
# 0x1.47ae147ae1469p-7 0.009999999999999969
# 0x1.47ae147ae1468p-7 0.009999999999999967
1888 1889 1890 1891 1892 1893 1894 1895 |
# File 'numeric.c', line 1888
static VALUE
flo_prev_float(VALUE vx)
{
double x, y;
x = NUM2DBL(vx);
y = nextafter(x, -HUGE_VAL);
return DBL2NUM(y);
}
|
#fdiv(numeric) ⇒ Float #quo(numeric) ⇒ Float
Returns float / numeric
, same as Float#/.
1157 1158 1159 1160 1161 |
# File 'numeric.c', line 1157
static VALUE
flo_quo(VALUE x, VALUE y)
{
return num_funcall1(x, '/', y);
}
|
#rationalize([eps]) ⇒ Object
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps
is not given, it will be chosen automatically.
0.3.rationalize #=> (3/10)
1.333.rationalize #=> (1333/1000)
1.333.rationalize(0.01) #=> (4/3)
See also Float#to_r.
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 |
# File 'rational.c', line 2286
static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
double d = RFLOAT_VALUE(self);
if (d < 0.0)
return rb_rational_uminus(float_rationalize(argc, argv, DBL2NUM(-d)));
if (rb_check_arity(argc, 0, 1)) {
return rb_flt_rationalize_with_prec(self, argv[0]);
}
else {
return rb_flt_rationalize(self);
}
}
|
#round([ndigits][, half: mode]) ⇒ Integer, Float
Returns float
rounded to the nearest value with a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
1.4.round #=> 1
1.5.round #=> 2
1.6.round #=> 2
(-1.5).round #=> -2
1.234567.round(2) #=> 1.23
1.234567.round(3) #=> 1.235
1.234567.round(4) #=> 1.2346
1.234567.round(5) #=> 1.23457
34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0) #=> 34568
34567.89.round(1) #=> 34567.9
34567.89.round(2) #=> 34567.89
34567.89.round(3) #=> 34567.89
If the optional half
keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode
:
-
:up
ornil
: round half away from zero (default) -
:down
: round half toward zero -
:even
: round half toward the nearest even number2.5.round(half: :up) #=> 3 2.5.round(half: :down) #=> 2 2.5.round(half: :even) #=> 2 3.5.round(half: :up) #=> 4 3.5.round(half: :down) #=> 3 3.5.round(half: :even) #=> 4 (-2.5).round(half: :up) #=> -3 (-2.5).round(half: :down) #=> -2 (-2.5).round(half: :even) #=> -2
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 |
# File 'numeric.c', line 2265
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
double number, f, x;
VALUE nd, opt;
int ndigits = 0;
enum ruby_num_rounding_mode mode;
if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
ndigits = NUM2INT(nd);
}
mode = rb_num_get_rounding_option(opt);
number = RFLOAT_VALUE(num);
if (number == 0.0) {
return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
}
if (ndigits < 0) {
return rb_int_round(flo_to_i(num), ndigits, mode);
}
if (ndigits == 0) {
x = ROUND_CALL(mode, round, (number, 1.0));
return dbl2ival(x);
}
if (isfinite(number)) {
int binexp;
frexp(number, &binexp);
if (float_round_overflow(ndigits, binexp)) return num;
if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
f = pow(10, ndigits);
x = ROUND_CALL(mode, round, (number, f));
return DBL2NUM(x / f);
}
return num;
}
|
#to_f ⇒ self
Since float
is already a Float, returns self
.
1677 1678 1679 1680 1681 |
# File 'numeric.c', line 1677
static VALUE
flo_to_f(VALUE num)
{
return num;
}
|
#to_i ⇒ Integer #to_int ⇒ Integer
Returns the float
truncated to an Integer.
1.2.to_i #=> 1
(-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
#to_int is an alias for #to_i.
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 |
# File 'numeric.c', line 2355
static VALUE
flo_to_i(VALUE num)
{
double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
|
#to_i ⇒ Integer #to_int ⇒ Integer
Returns the float
truncated to an Integer.
1.2.to_i #=> 1
(-1.2).to_i #=> -1
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).to_i #=> 2 (!)
#to_int is an alias for #to_i.
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 |
# File 'numeric.c', line 2355
static VALUE
flo_to_i(VALUE num)
{
double f = RFLOAT_VALUE(num);
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
return dbl2ival(f);
}
|
#to_r ⇒ Object
Returns the value as a rational.
2.0.to_r #=> (2/1)
2.5.to_r #=> (5/2)
-0.75.to_r #=> (-3/4)
0.0.to_r #=> (0/1)
0.3.to_r #=> (5404319552844595/18014398509481984)
NOTE: 0.3.to_r isn’t the same as “0.3”.to_r. The latter is equivalent to “3/10”.to_r, but the former isn’t so.
0.3.to_r == 3/10r #=> false
"0.3".to_r == 3/10r #=> true
See also Float#rationalize.
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 |
# File 'rational.c', line 2203
static VALUE
float_to_r(VALUE self)
{
VALUE f;
int n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
if (n == 0)
return rb_rational_new1(f);
if (n > 0)
return rb_rational_new1(rb_int_lshift(f, INT2FIX(n)));
n = -n;
return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(n)));
#else
f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
if (RB_TYPE_P(f, T_RATIONAL))
return f;
return rb_rational_new1(f);
#endif
}
|
#to_s ⇒ String Also known as: inspect
Returns a string containing a representation of self
. As well as a fixed or exponential form of the float
, the call may return NaN
, Infinity
, and -Infinity
.
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
# File 'numeric.c', line 913
static VALUE
flo_to_s(VALUE flt)
{
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value)) {
static const char minf[] = "-Infinity";
const int pos = (value > 0); /* skip "-" */
return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
}
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt <= DBL_DIG) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}
|
#truncate([ndigits]) ⇒ Integer, Float
Returns float
truncated (toward zero) to a precision of ndigits
decimal digits (default: 0).
When the precision is negative, the returned value is an integer with at least ndigits.abs
trailing zeros.
Returns a floating point number when ndigits
is positive, otherwise returns an integer.
2.8.truncate #=> 2
(-2.8).truncate #=> -2
1.234567.truncate(2) #=> 1.23
34567.89.truncate(-2) #=> 34500
Note that the limited precision of floating point arithmetic might lead to surprising results:
(0.3 / 0.1).truncate #=> 2 (!)
2389 2390 2391 2392 2393 2394 2395 2396 |
# File 'numeric.c', line 2389
static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
if (signbit(RFLOAT_VALUE(num)))
return flo_ceil(argc, argv, num);
else
return flo_floor(argc, argv, num);
}
|
#zero? ⇒ Boolean
Returns true
if float
is 0.0.
1711 1712 1713 1714 1715 |
# File 'numeric.c', line 1711
static VALUE
flo_zero_p(VALUE num)
{
return flo_iszero(num) ? Qtrue : Qfalse;
}
|